—_—

“AD-A050 580 STANFORD UNIV CALIF DEPT OF ELECTRICAL ENGINEERING F/6 12/1

1976 B LEVY, S Y KUNG, M MORF FQ~620-7h-C-0060
UNCLASSIFIED AFOSR=-TR=78=0157

NEW RESULTS IN 2-D SYSTEMS THEORY: 2=D STATE=SPACE MODELS = REA==ETC(U)

D-ITE
FILMED

4 =78

boc




A

LN LASS L LD
SECURITY CLASSIFICATION OF THIS PAGE (When Datn """"’"‘QL , \

REPORT DOCUMENTATION PAGE o READ INSTRUCTIONS

BEFORE COMPLETING FORM
2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

o

J U0 / S.

W RESULTS IN 2-§ §YSTEMS JHEORY, 2-B %6 "’92“—‘&""‘%"‘“‘T""‘°
TATE-GPACE MODELS - REALIZATIONS AND THE| () Jnterin vep = )
OTIONS OF gONTROLLABILITY, QBSERVABILITY)| T

ND MINIMALTTYs

6. P ORMING OG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

B/ y, S-Yi Kung et M/Mor
: — ) FL4620-74-C-§g68  ——

9. PERFORMING ORGANIZATION NAME AND ADDRESS e 10. ::gil\:zosnx.‘eusr?t PNOBJEEST. TASK
s < )
Stanford University c LR »

Department of Electrical Engineering i i ¥
Stanford, CA 94305 6LUf2F [2384
11, CONTROLLING OFFICE NAME AND ADDRESS 3

Air Force Office of Scientific Research/NM
Bolling AFB, DC 20332

14. MONITORING AGENCY NAME & ADDRESS(iIf dilferent from Controlling Oflice) 1S. SECURITY CLASS. (of Wla report)

UNCLASSIFIED

15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

A
B} aA05058

t‘c‘oz \

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

sswa .
L]
e I

000 Fue

g TR T

18. SUPPLEMENTARY NOTES

CONF ON MATHEMATICAL PROBLEMS IN MULTIDIMENSIONAL SYSTEMS, MONTER EY,
November 1976

R byt ig
) omw

LA R S ey Y

; 19. KEY WORDS (Continue on reverse side Il necessary and identily by block number)
% State-Space Models
¥ State, Controllability and Observability
? 2-D pigital Filter Herdware
: 2-D Transfer Functions
i Levinson's algorithm, _
20. ABSTRACT (Continue on reverse side It y and | ity by dblock number)
,__.._.) : V. cemwn ananver)
A short gomparsion between the different state-space models is presented.
,‘He discussvlproper definitions of state, controllability and observability
p and their relation to minimality of 2-D system;Wpew circuit
| realizations and 2-D digital filter hardware implementations of 2-D transfer
: functimck, as well as a 2-D generalization of Levinson's algorithm. e,
! are also precented
} DD ,on"s 1473  e£oimon oF 1 nov 6813 oBsOLETE UNCLASSIFIED
171 ¢g CURITY CLASSIFICATION OF THIS PAGE (When Dafa Ent

- S —— SN RPP—— U s -

.




s -

S—

ATy
A 2
At we Nls e & AT - »od

y - 7 : " R ¥
rd On T At hey s 10al L’/’,t"{‘tl,»--’ LA 74&‘//¢ - /)v/

/) 179 &

NEW RESULTS IN 2-D SYSTEMS THEORY, 2-D STATE-SPACE MODELS - REALIZATION
AND THE NOTIONS OF CONTROLLABILITY, OBSLRVABILITY AND MINIMALITY

by B. Levy, S.Y. Kung and M. Morf
Information Systems Laboratory, Stanford University, Stanford, California 94305

AFOSRTR- 78- 0157

Abstract

. A short comparison between the dif-~
ferent state-space models is presented. We discuss
proper definitions of state, controllability and
observability and their relation to minimality of
2-D systems. We also present new circuit realiza-
tions and 2-D digital filter hardware implementa-
tions of 2-D transfer functions, as well as a 2-D
generalization of Levinson's algoritha.

1. Introduction

Attasi, Fornasini-Marchesini, Givone-Roesser
have proposed different state-space models for 2-D
systems and have suggested some extensions of the
usual 1-D notions of controllability, observability
and minimality to the 2-D case. However, these re-
sults are not quite satisfactory; they either lack
motivation for the state-space models introduced or
the notion of state-space is improperly defined.

In this paper and in [18], we tried to provide
answers to these questions from a practical as well
as algebraic standpoint. We start with a discussion
of all the current models based cn a practical (cir-
cuit-oriented) poiat of view and on a proper defi-
nition of state. Since the other models can be
imbedded in the Givone-Roesser model, it appears to
be the most satisfactory one.

From the circuit point of view, we present in
Section 3 an implementation of 2-D transfer func-
tions using two types of dynamic elements - hori-
zontal delay elemcats z-1 and vertical delay cle-
ments w~1. The hardware implementation of 2-D digi-
tal filters for imaging systems is also discussed
in Section 3..

An algebraic approach based on eigencurves and
eigencones cnables us in Section 5 to introduce the
concept of modal controllability (observability).
wve show that a system is nminimal 1f and only 1f it
is modally observable and controllable.

" This work was supported by the Advanced Re-
search Projects Agency through the facilities at
the Stanford Artificial Intelligence Laboratory in
part by the National Science Foundation under Con-
tract NSF-Eng75-18952 and in part by the Air Force
Office of Scicntific Research, AP Systems Command,
under Contract AF 44-620-69-C-0101 and partially by
the Joint Services Electronics Program under Con-
tract N-00014-67-A-0112-0044.
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If we are given en irreducible transfer func-
tion of order (n,m), a State-space realization is
minimal 1f and only if it 1s of size n + m. Tre
existence of such (n + m) (real or complex) state
realizations 1s discussed in Section 6, :here
we provide a simple counter exzmple 2 & roz

.model. In the Appendix we give a 2-D generalizaticn
of Levinson's algoritim. In conclusion, it

appears that the results obtained by the algebraic
and the practical approaches are quite conmpatible.

2, State-Space Models for 2-D Systems

During recent years, several authors: Attasi
[1], [2], Fornasini-Marchesini [3], [4] and Civone-
Roesser (5] have propused different-state-space
models for 2-D systems. 1In (4], Fornasin! and
Marchesini were using the algebraic point of view
of Nerode equivalence and were the first to recl-
ize that a major difference between 1-D and 2-D
systems is that we can introduce a global state
and a local state in the 2-D case. The global
state (which is of infinite dimensfon 1n general)
prescrves all the past information while the local
state gives us the size of the recursions to be
performed at each step by the 2-D filter. However,
their state does not obey a first-order differeace
equation (the notion of first order difference
equation for linear systems on partially ordered
sets has been defined by Mullans and Elliott im
[7]1). Actasi's model (1], [2] suffers from the
same drawback.

Givone and Rocsser "in [8] and [5] have used a
"eircuit approach" to the problem of state space
realization for some 2-D transfer functicns. 1lhey
present a model in whic¢h the local state is di-
vided into an horizontal and a vertical state
which are propagated respectively horizontally and
vertically by first order difference equations.

Mitra, Sagar and Penderg;nsl gave a realiza-
tion for arbitrary transfer functions in [9] by
presenting an implcmentation mothod for 2-D traas-
fer functions using some delay elements z-1 and w-l,
via an approach that is consistent with Roesser's
model. A detailed comparison can be found in [15],
Part II. _

S
3. Circuit Realizations and Hardware Designs

First, we can note that the notion of “dynazic
clements", "multipliers" and "adders" is at the
center of clrcuit theory, 1In the 1-D discrete-time
casc, the dynamic clements used are (time) delay
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elcments. The 1-D realization problems have been
well studied and, given any transfer function, it
is well known that the realization can be readily
found in certain standard (e.g. controller canoni-
cal) forms [11]. For the rcalization of a 2-D
transfer function, a major difference is that two
types of dynamic elements are nceded - "horizontal
delay element” (z~1) and “vertical delay elemeut”
(w-1). Now an important problem is that of how to
use 2-D dynamic elcments, multipliers and adders to
recalize a 2-D digital filter with the transfer
function:
n mn
e e T 17 o s
ORI e 11"’ i)."‘o g=0 Y
. n m
a(z "0 ") z 2 s z-tu-j
1=0 j=0

We can do this in two steps. First we rewrite
(3.1) in a rational-gain representation, {i.e.

.(3.1)

n
) bi(u"l) o

H(z-l.m‘l) - ‘;0 (3.2)
-1, -
) ai(w ) z
1=0
Without loss of generality, we can l::uué %0 " 1

and we denote
s 81+ 7™

Thus, using the 1-D realization technique, we write
dowvn a realization, where the fains of the multi-
plicrs are represented in Flw™i}. Y

Figure 3.1 : o
By(5) (b)) (b,esh) (byesy
s g | iz 4
awy) (0@ (0@ (a4

The realization is almost achieved: 1in addi-
tion to the n horizontal delay elements we need
only m vertical delay elements to implement the
feedback gains {a (w"1), 1=0, 1...m} and m other
vertical delay elements to implement the readout
gains (bi(u‘l). 1=0, 1...m}. Thus, the complete
realization shown in Figure 3.2 requires oaly n+2m
éynanic elements.

This realization is a standard (canonical)
one; its structure is very simple and it involves
only rcal gains. Note also that we need fewer
dynanic elements than the implementations in [9].

Figure 3. 2: 2-D Controller Form chll;aé:on

w(d .
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State Space Model Representation

As remarked in Section 2, circuit_implemen-
tations with delay elements z~l and w-? are in a
one-to-one correspondence with state space models
of Roesser's type. The output of the z™%1 delays
are the horizontal states and the outputs of the
w-l delays are the vertical states.

Thus, the implementation of Figure 3.2 can be
transformed readily into the following state space
model: :

n xh(1+1.j)
xh(ioj)
m xvl(i.J-O-l) - A xv (1'1) +b \l(’..j)
1
Bl %, (144D %, (4:1) (3.3)
Y(ibj‘) = c x(4,3) + boo“(inj)
vhere
A : -e e’ : 0 » P P »
LTI VAlelaggl ol
A= A H A . 0 5 » , o
Fgeeniennn22 i) S Alge~bpof) gy
B s -hcuﬁi: 2z
with
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My Bz - 200882, 3, 8

and :
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(81580, j=a40bgy + 158Shs O<1Emio,Blbgy - bgel
L

(z), ,A{}ig listt-i } 8080800+ .:lnolg
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A discussion of some interesting properties of 2-D
state space models can be found in [18].

Hardware Design of 2-D Digital Filter

The idea of using two types of dynamic ele-
ments is not very abstract; it is very natural in
delav-differential systems. However, before
considering its practical application to image sys-
tens, two remarks have to be made:

1) Because the “"spatial" dynamic elements seem
unicplementable, (except as index operators in a
digital computer, for example,) we can replace them
by time-delay elements.

2) In order to have a finite order description,
we shall only consider a bounded frame system, i.e.
we assume that the picture frame of interest is an
MxN frame (with vertical widch M and horizontal
length N).

Note that in order to use time delay elements
we nead first to find a way to code a 2-D spatial
system into a 1-D (discrete-time) system and vice
versa. Thus we shall propose the tollowing imple-
mentation of a 2-D filter:

1) The input scan generator codes the 2-D
spatial input into 1-D (time) data according to
the mapping function t(.,.)

vhere M and N are relatively prime integers.

11) A 1-D (discrete-time) digital filter
processes the 1-D data generated by (1). This
subsyste- is implemented by replacing z-1 by 8 ,
w~l by A in a 2-D circuit realization (e.g. 2-D
controller form). & and A are chosen as

= DH = M-units delay element,

(’os,
4= D' -

441) The cutput frame generator decodc; the
1-D (discrete-timc) output of the 1-D digital
filter described above into a 2-D (discrete-spatial)
picture according to the inverse mapping of (3.4).
€iCc), 3(t)) = (PemodM, [t~ (Pt mod M)N}/M)(3.6)
wvhere P is the unique integer such that

PN - Q4 = 1 and O<P<M (3.7)

N-units delay element.

Verification: Let us note the 1-D (discrete-
time)  output will de i

y(D) = H(D) U(D)
- n(:'_‘.u")u(s".u")'
‘ '3 -n”.u' Lo®
«Il y1

1) | l-\"".m (3.8)

vhere {y;4) represents the 2-D (dtocrote—spattal)
output data ficld. Note also that

sy 0" (3.9)
t

‘Solution.

Comparing (3.8), (3.9), it is clear that
Yy, = ) y (3.10)
(4,9 :teN = ¢ eI

Since the system is a causal system,

-0 1f 1,3 <0 , (3.11)

4
Let us consider only the integer t with
t = IMHIN A 1<N,3“H

then (3.10) and (3.11) give

yt 5 ’1,1

since, for this special case, the summation set of
(3.10) contains only one nonzero point. There-
fore, we will obtain a bona fide output picture
inside the MxN frame.

This 2-D image scanning, and display systea is
not as complicated as it looks, it can be sicple:

Example: Problem: Design a 2-D digital filter for
1

140.3z" 240,207 240,127 10!

MxN = 100x101. Assume D=0.01 ms.

(1) 1sc

In this special frame (with H=t{+1), the input
scanning generator is 1ndeed very simple, as shown
in Figure 3.3.

Bz wl) -

for a frame:

§ 100 N N

N

N

Am3/ine 101

Scanning time: 0.01 ms/pixel = 1 ms/line
Scanning angle: 45°

Fig. 3.4 Input Scan Generator & Qutput Frame
Generator

(11) 1-D digital filter

Constructing the 2-D realization of Figure
3.2 and then replacing z-1 by 8 and w-l by A we
have the 1-D realization shown in Figure 3.4

U, + Yi

¢ 1.01 ms delay element
1,00 ms delay element

OQD-




(111) oFc

The output frame gencrator does the reverse of

the ISC, displaying the picture ins:eadofacannlngf
Dimensfonality of Clobal State

Considering a bounded frame (MxN) system, {t
is interesting to know the dimension of the global
state (or initlal conditions) needed to process the
MxN "future" data field. Since vertical states
convey information vertically, all the vertical
states along the X-axis are necessary.initial con-
ditions and their dimension 1s mN. Similarly, all
the horizontal states alonz the Y-axis are neces-
sary initfal conditions (with dimension nM) since
théy convey information horizontally. Therefore,
in the bounded frame case a total number of mN+nM
are needed to summarize the '"past" information.

This very same idea can be used again from a

cozputational point of view. Indeed, the number of -

required storage elements for recursive computa-
tions is also equal to nM+mN if initial conditions
are not zecro. However, the initial conditions are
often zero, then the-size of storage required can
be reduced to mN (resp. nif) by storing the updated
data row by row (resp. column by columan). No
storage is necded for the rest of the initial con-
ditions - rM horizontal states (resp. mN vertical
states) - since they are assumed to be zero. This
is consistent with the result of Read [12] derived
from a direct polynomial approach.

Another interesting observation concerns the
dimension of the 1-D digital filter contained in
our 2-D digital filter design discussed above.
Since it needs n M-unit-delays and m N-unit-delays,
the corresponding 1-D state-space has also a dimen-
sion equal to nM+mN. MNote that, despite the high
dioension of the corresponding 1-D filter, its
high sparsity is very encouraging for further
studies.

In short, our studies on the dimensionality of

2-D global states have reached a consistent conclu-
sion from either theoretical or practical approaches.

4. Global and Local Controllability and
Observability

" For reasons of space we deferred this Section
to [18], part II.

S. Modal Controllability (Observability) and
Minimality

In the 1-D case, the relative primeness con-
cepts could also be used to define controllability
and observability. In (16]) Rosenbrock proved that

A, B vas controllable if and only if z1-A,B

vere left coprime.

C, A vas observable if and only 1if C, zI-A

vere right coprinme.

This approach can be generalized very easily
to 2-D systems and will also provide a definition
of oinimality.

Definftion 5.1 Let H(z,w) = VI'U where V, T, U
are 2-D plyromial matrices. It is a minimal
description of H(z,w) 1f and only if

V, T are right coprime and T, U are left co-
prime. s

This amounts to requiring that there is no
cancellation in the 2-D transfer function H(z,w).Ir
(18] part I we also provide the important property "
that if (V,T,U) and (V,,T,,U;) are two minimal
descriptions of H, |T| = 71}- We also preseated
an algorithm to extract the greatest common right
(left) divisor of two polynomial matrices, which
enables us to find a minimal description of H from
a nonminimal one.

Define A(z,w) A [(201“ g ) -A]l= An'm(l.'ﬂ) .

In
Then, in the state space description case
H = CAz,w)"1B is minimal 1f and only if

[A(z,w),B] are left coprime (5.1)
and

[c,A(z,w)] are right coprime (5.2)

Definition 5.2 (1) A,B is modally controllable
if (5.1) holds.
(11) C,A is modally observable if
(5.2) holds.

These definitions are clearly connected

to minimality but the state space signifi-
cance of controllability and observability disap-
pears in this formulation. This is why we shall
give now an equivalent state-space characterization
of the notions of modal controllability and obser-
vability . Another consequence is that for a
single input-single output system, if H(a,w) =
%%24g% and 1f b and a are coprime with aza = n
3uﬂ" m, then if CAP (z.u)'ln is a minimal realiza-
tion of H(z,w) we must have |A(z,w)|= a(z,w) and
hence p = n and q = m. g

Hence the validity of our definition of mini-
mality of a state-space riodel will depend on our
ability to realize a transfer function of order
(n,m) with nim states. This problem was considered
in Section 6 of (18], part II.

A consequence of the relative primeness
criterion for 2-D polynomial matrices given in
(18]..part I 1s that C and A(z,w) are right
coprime if and only if

rank A(é,w)] = nim

for any generic point (£;, £2) of any irreducible
algebraic curve V; appearing in the decomposition
of V, the algebraic curve defined by |A(z,w)| = 0.
It is to be noted that the rank is considered over
the field K(£;, £2). A proof of this is given in
(18], part II, along with some illustrating
examples.

6. Minimality of State-Snace Model

It is shown in the last section and in (18],
part II, that only a state-space realization with
order (n,m) - 1.e. the same order as the transfer
function - can be both modally controllable and
modally observable. Now the question is whether
such a realization exists at all.

The best way to prove the existence of such
realization is by construction. Note that, in the
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2-D stite-spnce model, the particular transform

9 0% B SE  E  B

T X x
v v v

(6.1)

-~

*v 0

enables us to change the basis of the state-space.
The matrices {A,B,C,D} are transformed to

A=TAT1 B=1TB
2 & (6.2)
c=crl D=D

In fact, it is nore convenient to work with a: ca-

nonical form under the "similarity transform"
defined by (6.2).

In the 1-D case, all minimal state-space model
can be transformed to the controller canonical form.
Simfilarly, almost all [18] 2-D state-space model
can be transformed to the followingmodal controller
forn {A, B, C,} (assuming D = 0)

za_e 24 ‘.A B’. (‘e.a,le‘ )
% Beabom S SR R T (6.3)
€ = [boolbgy)

where z.,a.,b.,e. were defined in (3.3) and the
entries of Aj7 and A7) are to be chosen such that

(6.4)

det[A(z,w)) = a(z,w)

and 3
A(z,w) | B ; :
de{ ] ~ b(zow) & . (605)
-C |.0

It is easy to check that, in (6.4), the co-
efficients {a1 ,0<1<n} and {ag ,Q;jjp} have already
been matched.” Similarly, in (g.d , the coeffici-
ents {byg, 0<i<n} and {bgy, 0<j<m} have already
been nmatched. Therefore, only 2nm coefficeints
{agy; 1<i<n , 1<§<m} and {byj , 1<i<n , 1<i<m} are
to be matched. 1In other words, there are totally
2rnm (nonlinear) eguations to be satisfied. Coinci-
dently, the number of free parameters in matrices
A)12 and Az; 1s also 2nm. Therefore it is natural
to cocnjecture that a solution (or, more precisely,
a finite number of solutions) should always exist.

Now let us examine the plausibility ff this
conjecture by taking a low-order example.

Example 6.1 (1,1) order case

For ease of notation, let Aj2 = a , A21 = B.
Also (without loss of gencrality) let us assume
that bjg ¥ 0 (otherwise, ve may have to use another
canonical form). Then (4) becomes

zwha - z4a, - w-dB = zwtag):z+ajg-whay) or equiva-
01 10
& . lently
ma (6.6)

and (6.5) becomes
boa2*Pygt (310501 +35; 010400 B) = Boy24b quid,

or
5018*%10% * ®117%01%107%10%01 . (6.7)
Since bjg ¥ 0., (6.6) and (6.7) have solutions

"...O...- cnmaccsnnsane

e A 4 i 4 . _ -
s ®107201%10710%01%” 1171010 ?10%01
-4ay 1561510
Aa
Mo
a . (6.8)

Therefore, the existence of (1,1) order state-~
space model has been proved by construction. [J

Unfortunately, (6.4) and (6.5) usually give
a set of 2nm nonlinear equations; therefore the
solution may not always be in real numbers. For
realization with real-gain constraints, we often
need a realization order higher than nitm. To show
that an (n,m) order real-gain realization may not
exist, it is easiest to work on an :xample.

Example 6.2 The problem is to show that there is
no (1,1) order real-gain realization for the

transfer function ;

z 4+ W
2w - 1 s

Solution: Let us assume

byl

C=[g, h) =

Since a;; ~ -1, B = a-l. Then (6.4) 1is satisfied,
and (6.5) becomes

(6.9)

fhz + egw - (eha ! + gfa) =z +w  (6.10)
or equivalently,
fh=1 (6.11)
eg =1 (6.12)
ehal+gfa=0 . (6.13)

Now, (6.13) x hg - (6.11) « g2a - (6.12) x h%a™}
gives e
gzu + bza 1 =0 .

(6.14)

Since (6.14) has no real number solution, no (1,1)
order real-gain realization exists, (e.g. f = h =
e=g=1,a=-8=/17).

In the practical aspect, real-gain realiza-
tions are much more desirable than complex
realizations because the former are much ecasier to
physically implement. Therefore our (2min) order
real-gain rcalization (cf. Section 3) are justi-
fied to be practical and low:crder realizations.
Indced, for the transfer function in Example 6.2,
the minimal real-gain.realization {A, B, C} can be
obtained by our realization method;

911 91 p .« qiforn)

A=111 0 Ore upjon)
ol-1 o y

(6.15)

Special Transfer Functions

In designing digital filter, the traasfer
function may be intendedly chosen in a certain
form for the purpose of an easier and/or better

E. Sontag (Univ. of ri;;ii;;.;;dcpcad;;;iy arrived at the samc conjecture recenily (private communication).
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recalizatfon. Therefore, it 1s worth mentioning
that some special types of transfer function can be
easily recalized in (n#m) order real-gain realiza-
tions. There are two important special types of
transfer functions:

. 1. with separable denominator.
ii. with separable numerator.

Let us first consider the separable denominator
case. Assuming

s ' (6.16
O U PR Y ol N Y G ) M
g aéz-l.m;l) (z"1,8w™) 957078y
y b, 2zt
=) 1.0 j =0 11
(agtayz 4. b 2™ (B#8, Lo 4B 0™

then its circuit realization is shown in Figure 6.1

Special Form 1
B , st /g5y
0; 1 '2;. .Qs
=t lﬁt
SN,
u "3| IR '{ -l‘ 3 y
1|2 -0/
-l h‘,..‘
% - .b" Y A xl -
% v, [, %
? b
I).‘)l ; e

5 -

Controller-Observer-Type Form

Secondly, let us consider the separable
numerator case, which is to say a system with - :
transfer function.

~ o] - ¥ a¥ =1 -1
Ao = eyt . 8l ) BE )
b, 2 L
1§o jgo 13
(6.17)

At first sight, it seems quite difficult.
However, in actuality, the realization can be
readily obtained by using the inversion rule by
Kung [17). More precisely, to‘'realize the inverse
systen of Figure 6.1, we first note that the path
“input -- 02 -- 8. -- input” {s a "fced through"
path ({.e. a path connecting input and output with
only constant gains). The second step 1s to invert
all the gains aad reverse all the arrows on the
path (in our case, replace bgg by bgg~1). Lastly,
change signs of the gains of the branches which are
entering this path. These atcpc complete the
realization of H-1(z=1, w~1l), in (18], part II the
inplementation is given.

S S

Remark: In many design problems the constraints 3
on numerator are much weaker than on dencminator, |
hence this second form seems to have higher poten~

tial in practical applications.

REFERENCES

1. S. Acttasi, "Systemes lincaires homogénes a
deux indices," Rapport LABORIA, n® 31, Scp-
tember 1973.

_2. S. Attasi, "Modélisation et Traitement des
suites 3 deux indices," Rapport LABORIA, '
September 1975.

3. E. Fornasini and G. Marchesinif, "Algebraic
Realization Theory of Two-Dimensiornal Fil-
ters,”" in Variable Structure Svsterms, A.
Ruberti and R. Mohler, eds. (Springer Lecture
Notes in Economics and Mathematical Syste=s),
1975. .

4. E. Fornasini and G. Marchesini, IECE Trans.
on Automatic Control, vol. AC-21, pp.
484-492, August 1976.

5. D.D. Givone and R.P. Roesser, IEEE Trans.
on Computers, vol. C-22, no. 7, pp. 673-678,
July 1973.

6. W.A. Wolovich, Lincar Multivariable Svstezs,
New York: Springer-Verlag, 1974.

7. R.E. Mullans and D.L. Elliott, Proc. 1973
IEEE Conf. on Decision and Cuntrol, pp. 334-
337, 1973.

8. D.D. Givone and R.P. Roesser, IEEE Trans. on
Computers, vol. C-21, no. 10, pp. 1067-1073,
October 1972,

9. S.K. Mitra, A.D. Sapar and N.A. Pendergrass,
IEEE Trans. on Circuits a2nd Systems vol.
CAS-22, no. 3, pp. 177-184%, March 1975.

10. V. Zakian and N.S. Williams, Control Systems
Centre, Rept. No. 213, Univ. of Manchester,
July 1973.

11. C.T. Chen, Introduction to Linear System

Theory, New York: Holt, Rinehart & Winston,
1970. ’

12, R.R. Read, J.L. Shanks and S. Treitel, Topics

in Applicd Physics, vol. 6, pp. 137-176, New
York: Springer-Verlag, 1975.

'13. R.P. Roesser, IEEE Trans. oaAutonatic Contrel,

vol. AC-20, no. 1, pp. 1-10, February 1975.

14. B. Vilfan, IEEE Trans. on Computers, vol.
C-22, no. 12, p. 1140, December 1973.

15. R.E. Kalman, P. Falb and M. Arbib, Topics in
Mathematical System Theory, New York: McGraw-
Hill, 1969.

16. H.H. Rosenbrock, State Space and Multivariadle
Theory, New York: John Wiley & Sons, 1970.

17. S.Y. Kung, "An Easy Method for Inverse Systea
Realizations and Its Applications,” to be -
submitted.

18. M. Morf, B. Lévy, S.Y. Kuag, "New Results in
20-Systenms Theory, Part I:...", and S.Y. Kung,
B. Lévy, M. Morf, T. Kailath, "New Results in
2D-Systems Theory, Part IT:..." Proc..,
Special Issuc on Multi-D Systs., May 1977.

19, T. Kailath, IEEE Trans., on Infor. Thv., Mar. 1974.

20. R. Wiggins & E. Robinson, J. Cccphvs. Res.,
pp. '1885-1891, April 1965.

21. Y. Cenin and Y, Kamp, [Elcctreaics lctters,
1975. Sce also Rept. RI2l, January 1976.

22, B. Dickinson, T. Kailach & M. Morf, IEEE Trans.
on_Auto, gonitol. P Gul. Dec. 197‘ LoEE Trans




" AT

Appendix: 2-D Levinson Alporithms: The following .
sct’ of results were motivated by the problem of
rdetermining stability of 2-D rccursive filters., -

In the 1-D case the connections betwecen stability
orthogonal polynomials and the Levinson recursions
are by now well known.

"In the 2-D case, Shank conjectured that the
least-squares inverse, say b(z,w), of an unstable
2-D polynomial a(z,w) (of degree n in 2z, m

in w) 1is stable, f.e.,
n,m .
T b“z uj = b(z,w) ~ 1/a(z,w) » (A.1)
1,3=0,0
where b(z,w) minimizes
I - aCz)bz,w]? (A.2)
or -,

: fego - @ B2
with
'E('JOQ []‘.‘,0,...,0], (1x (2n+ 1)(m+ 1)]

!" - [bOO""'bOu'blo'“"bnn]
and the Toeplitz block Toeplitz matrix @ contain-
ing the coefficients of a(z,u) such that [@})
is the vector of the coefficients of the product
polynomial [a(z,w)b(z,w)]. Then b 1s given by
the solution of

b= [aalb - e, s, (A.3)

By applying the Levinson (LRW) recursions [19], for
block matrices developed by Robinson and Wiggins
[20]. to (A.3) b can be obtained from the first
column of the block solution R B = [I,0,...,0]'.
Or with

WA[Lw,eee,w™)
b 1
b(zw) = I b, (z)w” = w'b(z)
i=0

= (W0 2000’2 JB &) = w'B(2)g, -

(A.4)

Using the property of the LRW recursions that
|3¢z)] has its roots inside the unit circle, the
g.c.é. of (by(z)), vhich divides |B(z)| - contains
a subset of these roots.

We can therefore conclude that the nonprimitive
factcrs of b(z,:)--the contents in z and w--are
indced stable.

However Genin and Kamp (21] proved that
b(z,w), therefore the primitive factors, are in
general not stable for n,m> 1,

A_2-D Levinson Alporithm: Genin and Kamp developed
@ 2-D generalization of the orthogonal polynomials
on the unit circle. We give here an equivalent
recursion in the time-domain using a stochastic
framework (see, e.g., [19])."

We consider a finite window of a scalar 2-D
stationary stochastic process (ygy, 1 €(0,n],) ¢(0,m]))
with zero mean and covariance ! :

LYy i) = Foop, gok
14> Baggeroer (MiT) iiﬂiiiﬁiiiiﬁ'iﬁi"cwlmi
such recursions (private communication).

 Petine

(n,m) '
emd | TR

as the Jth column of the data array, 0 <£j<n
and A0

w(nln) Q [W'En’m)‘

]
.ooopygn’m) ]' »
the data array scanned column by column. Now the
covariance of ("™ 15 given by 3
!
z‘y(“:m)y(n:m) ) = g:(nom) (A.5)

vhere (™™ 45 4 (n+l) by (n+1) block Toepli:;
matrix with Toeplitz block entries Ry.g = {("+=)
of size (m+l) by (m+l) and R_j = Ry,

(Rk)ij," Ty, §-10 Now, let

N
y(n,&;n,m) = E(y(n,1i)]y(r,s) :

(0,0) < (x,s) < (nsm):kr") ¥ (n,0)],
2 0<L<m (A.6)
J) *'(O,m)
<

(n,m)

e (0,0 = Su|rr7

- > 1
*€0,0) (n,0) -

" '

Y, Lin,m) = - y @™ ai:::; x (A.7)

vhere
= 53 !
ag:::; e [agn’m) (@,4) 5000 ta'sn’n) (“l‘-)] ¢

and
' dm-L+1 position
ag“"") (Myd) = [X;000,%,0,%,000,X]
So that if
;‘(:n,n)' -[;(n.n_!;n,n) Joivs .;(n,t;n,u) reeesy(r,8);n,m)]
F@,tin,m) = y(n,Lin,m) - ¥y(n,4;0,m)
Then ; 3 :
' FRm" o L ylnm) gaem) (A.8)
where
0™ = & @1y + @G el da(D)
§ (A.9)

Note that diagonal entries of top block of
aén,m) equal unity, and denotes Kronecker
product. 'Similarly we can define

¥(k,min,m) = E(y(k,m)]y(r,s):

(0,0) < (r,8) < (n,m),(r,s) # (k,m)) = (A.6")
el 9(“").02:::; »0<k<n (A.7')
also
V:n”')'-[;(nai:ﬂnﬂ) seee ,;(k,m;n,m) i ,;(O,m;n.m) L
y(k,m;n,m) = y(k,m;n,m) = y(k,m;n,n)
and




X 'g(nom)' P 7(“"“).0:“'“‘) ) (A.8')
vhere

(n,m) (n, mj, (n,m) } (n,m) "

Or .IMI.@S_I‘F.[a(n ﬂ)". .a(k’m) |-00|a(° m>](A09

Note that diagonal entries of b12 somposed of
1th row of ith block entry of ap equal unity.
Also, the first columns of aé“'"‘) and of ‘g(n,m
are the sare. Then by (A.5), (A.8) and (A.B'f

E(y (n,n) [ ;:“ 3‘“’, ;é“ :m)'] ).a(“ »m) [a!(:n am) '.aé“ »m) )

and also by (A.6) and (A.6')
E‘y(n,m)[,'.;(n.m)' ~(n,m)“ & [ein,m).egn,m)] {

e;'wbiaa(e(n-l),m,n,m)]@) eli (1) x (n+l)] ?
€(k,m;n,m) > 0
€(n,L;n,m) >0 .

e‘f_“"f) ¢ ¢, @Disg(e(n,m-1;n,m)) ,
hence '

a(n.m)[a:n.n).agn.m)] « [0 By iy

are the 2-D Levinson equations, therefore we have
n-ml auxiliary solution
of Q¢ (n,m) (or of ag since they are the same)
corresponds to the 2-D causal estimate of y(n,m)
given y(i,j) : (0,0) £ (1,j) < (n,m), L.e., it is
the ++ predictor of y(n,m) (one quadrant-
predictor). The last column of a “'m g}ves the
=+ predictor and the last column o gives
the -+- predictor.

The Levinson Recursions: First define

1 1f dam-j
("-]ué{o else :

Now, observe that the following reorderings hold:

0<1,j<m

G,®1 0 @) =2, @y

hence

C,@INn" 0 ®©I)6, @I )[a“""" afte)

.——v———-‘
I(n+1) (m+1)
- 6 @i e el
so that «
a(noﬂ) ("'n®"n)[a:n.n) 'a:“nﬂ)] [e:no‘) 'cin'-)]

and we multiply

(Jﬂ # )
0 "-
on the right and denote

* » (“ l-)
ar gy (Jn ® J-)ar "n .

o - 6,000,

Also, the first column -

e g @3 ey

n ’» . $
" p*(n,m) (n,m)
ec w (Jn ®Jm)ecn : In*
Then

gt(n,m)[a:(n.m)a:‘(ﬂ.'ﬂ)] [e (“'m)c (n,m)]“ 12)

and
*(n,m)
e = J, Diagle(n-1,m;n,m))J @e ,,

- p¥(n,m)
zr ®3m+1
(ve have used (A®B)(C®D) = AC(® BD).

g*(n,m) _ &ny1 ®J, Diagle(n,m-1;n,m) )3 =

*(n,m)
o -e-m—l@Bc -
Now define
(t:“’“) ¥ix

Similarly

(.)

R seeoR dag (A.13)

P 68y g ey g 108

9 (A.14)

Now, the 2-D Levinson recuréions can be described
as follows. Increase in n: n-ntl, m-m,
see FigureAl,

- (n,m)]
[ Ont1 g
a(n+lim) a(n'm) - e(n’m)
s *(n,m) 5 *(n,m)
o e
n,m)
..0""'1 4 L‘é N
(n,m) n,m)
(‘t: = Jn ¢¢(: Jm) o
Now, let
[ (n;m)
a 'l
a(m-l,n) i £

( (2 J

- . -lz*(n.m)-ld(n,m) A(n,n)-l
( c
i (A.15)
vhere
(a,m) _ _(n,m) (n,m) _*(n,m)-1_(n,m)
Ac.. -zc’. _d:nms.cn ¢cnm.
Then
R(Ml'm)&-in+1’m) & -‘-1@’,»1 (A.16)
and the diagonal of the top block of a‘(:“"'lul)
equals D!.ag(t(tﬂ»l,m-i.n.o.l.m)) o that a(n-rl,u)

i{s just obtaincd by re-normalizing the columns of




——

. : \

ai"f'l s'n)

Note 1: (n+1 k; m+1,n) 40 otherulie deleting

the kth cOIUﬂn a? k‘ih row of o , Wwe
at ¢ = 0. But $§“+1)m)

could find ¢
is a covariance anﬁ this uould mean that the
estimation problem is singular.

Note 2: Similarly 2n+l ykin+tl,m) # 0 otherwise
there would be ¢: @ “*1'”)9 = 0. also
°m+l .
_(n+l,m)
g(r+l,m) a, 2
a(”l .ﬂl) e
and let —M‘;;J"’ 7 \White Section " ¢
o=t oot goft Section O
1 gaaNHmIeT® - o
- US{l oA ToN i |
a:n+1,m) a a(n,m) (n+1,m) (n,m) (A.17) £k
r c R i RO SR SR BRI R Rl TRl P TN
then —
(o#1,m (r+1,m) | cmh nmﬂm-ﬂ.“"“"m““‘ 33
ar )N) - [ac], »m) \ ax(.n"l‘ pm)] , (n+2 colmms) Dt "':A"“‘_ .,‘n__,’.‘_
(A.18)
where a‘“*l’“) is the first column of a(“+1’m)

To obtain the recursions for an increase in m,
we just have to reorder (™) 45 blocks of size
(n+1)x(n+1) then the roles of m and n are
exchanged as well as Q. and and we can use
the same recursion as tﬁe onc just described,

This version of the recursion enables us to
increase n and m separately, instead of the
schexe proposed by Genin and Kamp where m = n,

Kote 3: The inversions required
have additional structure, i.e.,
typically non-Toeplitz, but sums
Toeplitz matrices. One can take
a structure by using generalized Levinson recursions
[22] to find a representation of the inverse of such
natrices also in terms of sums of products of Toeplitz
matrices. Expressions with Toeplitz matrices,

since thcy are related to convolutions, can be
evaluated using Fast Fourier Transforms (FFT's).

by these recursions
the matrices are

of products- of
advantage of such

. n+l M+l NH__ mel
WY R [of e o
\\R?§ Ro | “\: N[ Ref R 'X X ?-,PD 0
5 L o ERPL T KIK=X Gr
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